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Abstract

Effectively explaining decisions of black-box machine learn-
ing models is critical to responsible deployment of AI sys-
tems that rely on them. Recognizing their importance, the
field of explainable AI (XAI) provides several techniques to
generate these explanations. Yet, there is relatively little em-
phasis on the user (the explainee) in this growing body of
work and most XAI techniques generate “one-size-fits-all”
explanations. To bridge this gap and achieve a step closer to-
wards human-centered XAI, we present I-CEE, a framework
that provides Image Classification Explanations tailored to
User Expertise. Informed by existing work, I-CEE explains
the decisions of image classification models by providing the
user with an informative subset of training data (i.e., example
images), corresponding local explanations, and model deci-
sions. However, unlike prior work, I-CEE models the infor-
mativeness of the example images to depend on user exper-
tise, resulting in different examples for different users. We
posit that by tailoring the example set to user expertise, I-
CEE can better facilitate users’ understanding and simulata-
bility of the model. To evaluate our approach, we conduct
detailed experiments in both simulation and with human par-
ticipants (N = 100) on multiple datasets. Experiments with
simulated users show that I-CEE improves users’ ability to
accurately predict the model’s decisions (simulatability) com-
pared to baselines, providing promising preliminary results.
Experiments with human participants demonstrate that our
method significantly improves user simulatability accuracy,
highlighting the importance of human-centered XAI.

Introduction
As AI systems receive increasingly important roles in our
life, human users are challenged to comprehend the deci-
sions made by these systems. To ensure user safety and
proper use of AI systems, experts across disciplines have
recognized the need for AI transparency (Yang et al. 2017;
Ehsan et al. 2021; Russell 2021). Solutions for AI trans-
parency – e.g., techniques for explainable AI (XAI) – are
essential as most AI models can be viewed as a “black box,”
whose decision-making process cannot be easily interpreted
or understood by human users. Among the different settings
of XAI, our work focuses on explaining image classification
tasks (Barredo Arrieta et al. 2020). Existing XAI techniques
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Figure 1: I-CEE tailors the explanation process to each user
by considering their expertise. By selecting the most infor-
mative explanations based on user expertise, I-CEE can bet-
ter enhance user simulatability of ML model’s decisions.

for image classification widely use attribution explanations,
such as GradCAM (Selvaraju et al. 2017), SHAP (Lundberg
and Lee 2017) or LIME (Ribeiro, Singh, and Guestrin 2016).
While these techniques inform our work, they all miss one
key element: human factors, potentially due to the complex-
ity of modeling human users.

We advocate that human modeling is critical to XAI re-
search because explainability is inherently centered around
humans (Liao and Varshney 2021). A few works focus-
ing on explaining reinforcement learning policies use cog-
nitive science theories to model the human user and gen-
erate explanations based on the human model (Baker and
Saxe 2011; Huang et al. 2019; Lage et al. 2019b; Qian and
Unhelkar 2022). Closer to our focus, the works of Yang,
Folke, and Shafto (2022) and Yang et al. (2021) utilize a
Bayesian Teaching framework to model human perception
and then generate human-centered explanations. One limi-
tation of these works is that all human users are treated the
same by the modeling method, presuming that an identical
set of explanations will work for all users. In contrast, we
attempt to generate tailored explanations for each user by
modeling their task-specific expertise. Our approach to mod-
eling user expertise is informed by human annotator models
used in active and imitation learning (Welinder et al. 2010;
Beliaev et al. 2022). Similar to these works, our user model
aims to capture both the decisions and reasoning process



(expertise in concepts used for image classification) of the
human user in the context of a given classification task.

To bridge the research gap that personalization is missing
in the explanation process, we propose the framework Image
Classification Explanations tailored to User Expertise (I-
CEE). Informed by existing XAI methods for image classifi-
cation, our framework utilizes the explanation-by-examples
paradigm and provides attribution explanations (local expla-
nations) for a subset of training data. However, in I-CEE,
the approach of selecting the example explanations differs
and is user-specific. For a given image classification task, I-
CEE first discovers a set of m task-relevant concepts. It then
models the user’s task-specific expertise as am-dimensional
vector, where each entry lies between [0, 1] and represents
their expertise in the corresponding concept. Based on this
user model, I-CEE finally selects the set of local explana-
tions that can best fill user’s knowledge gaps.

As depicted in Figure 1, by selecting the set of local ex-
planations that can best increase the user’s task-specific ex-
pertise, I-CEE aims to accelerate user’s understanding of the
decision-making process of the machine learning model. In
contrast, most existing work in XAI either selects random
or one-size-fits-all local explanations, thereby foregoing the
opportunity to accelerate model understanding by providing
tailored explanations. The contributions of this work can be
summarized as follows:

• We identify the opportunity for tailored explanations for
explaining decisions made by image classification mod-
els and develop a novel framework named I-CEE that re-
alize this opportunity. This work represents an advance-
ment towards human-centered explanations.

• To evaluate I-CEE, we test the simulatability of expla-
nations generated by our framework on four datasets.
Results demonstrate that our framework achieves better
simulatability (i.e., users’ ability to predict the model’s
decisions) relative to state-of-the-art XAI baselines1.

• We evaluate our framework through detailed human-
subject studies (N = 100). Experimental results indi-
cate that our framework can more effectively help users
understand the ML model’s decision-making than the
state-of-the-art technique Bayesian Teaching (Yang et al.
2021), and is subjectively more preferred by the partici-
pants, highlighting the advantages of our framework.

Related Work
Human-centered Explainable AI. Recent surveys indi-
cate a growing activity in XAI research (Doshi-Velez and
Kim 2017; Liao and Varshney 2021; Rong et al. 2023). The
field recognizes the central role of humans in their expla-
nations, leading to increasing adoption of human-centered
evaluations of explanation techniques (Lage et al. 2019a).
Besides evaluations, a few techniques have also considered
human factors in generating explanations (Lage and Doshi-
Velez 2020; Lage et al. 2019b; Huang et al. 2019; Qian
and Unhelkar 2022; Yang, Folke, and Shafto 2022). Among

1Code is available at https://github.com/yaorong0921/I-CEE.

these, the most related framework is that of Bayesian Teach-
ing, which focuses on image classification and selects ex-
planations by modeling the users as a Bayesian agent (Yang
et al. 2021). However, this work does not model differences
between users’ reasoning or prior expertise. In contrast, we
consider personalized user models to better fit the specific
explanation needs of different users. Our design is informed
by research in pedagogy and active machine learning.

Pedagogical Theories on Learning from Errors. XAI
has been viewed as a teaching process, where the XAI tech-
nique serves the role of the teacher and the user that of the
student (Qian and Unhelkar 2022). To teach learners effec-
tively, pedagogical research confirms that a teacher needs
to assess a learner’s prior knowledge and design instruc-
tions accordingly (Owens and Tanner 2017; Ambrose et al.
2010). A common indicator of incorrect knowledge is er-
rors, caused by an incorrect association or understanding.
To correct the errors, feedback on the correct answers along
with explanations have been found to be crucial and most
helpful (Metcalfe 2017). These findings in learning sciences
have laid the groundwork for our XAI framework, moti-
vating our example selection approach; in particular, I-CEE
emphasizes explaining the images on which it estimates the
user will make errors. Additionally, as the confidence in an
error increases, learning from the error also increases (But-
terfield and Metcalfe 2001; Metcalfe and Finn 2011). This is
an effect known as the hypercorrection effect. To reflect the
hypercorrection effect in our framework, we choose images
where the user has low confidence in the correct label (i.e.,
high confidence in the incorrect label), and argue that using
these examples will result in better learning outcomes.

Active Learning. In the context of machine learning
(ML), techniques for active learning aim to achieve high
model accuracy while minimizing the required labeling ef-
fort (Settles 2009; Ren et al. 2021). Active learning is valu-
able in domains where a limited amount of training data is
labeled, and it has been used beyond classification tasks such
as in sequence labeling (Settles and Craven 2008) or image
semantic segmentation (Sinha, Ebrahimi, and Darrell 2019).
While active learning pertains to training machines, we ob-
serve that insights from the field are highly relevant for XAI
(which seeks to train humans about an AI model). By mak-
ing this novel connection, we leverage a central component
of active learning techniques – query strategies – to inform
the development and evaluation of I-CEE.

Problem Statement
Consider an ML classifier, denoted as f or the target model,
trained on dataset D of image-label pairs (x, y). The clas-
sifier f : Rd → {1 : K} maps an input image x ∈ Rd to
a label y ∈ {1 : K}, i.e., f(x) = y, where K is the num-
ber of classes. For a subset of images, the predicted label
y may not match the true label y∗. To explain such target
models, different feature attribution methods have been pro-
posed that generate local explanations (Ribeiro, Singh, and
Guestrin 2016; Lundberg and Lee 2017). These local expla-
nation assigns each input pixel an importance value, denoted
as e ∈ Rd, which is usually visualized as a saliency map. In
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Figure 2: Overview of I-CEE. Left: The target model is first projected into a concept space, which is then used to estimate user
expertise. Two users are illustrated. User 1 uses the concept c1 in the reasoning process and can differentiate only two classes
(highlighted in blue). Likewise, User 2 is able to distinguish two classes based on c2 (in orange). Right: Based on user models,
explanations with images (x, e) in the training set that maximize Hypercorrection Effect are selected and delivered to the users.

the explanation-by-example paradigm, the user is shown a
set of images sampled from the training data, its local ex-
planation, and its prediction, i.e., (x, e, y). As the user has
limited time to understand the model, it is important to select
the set of most informative example images.

Within the explanation-by-example paradigm, we con-
sider the problem of selecting the set of most informative ex-
ample images (and corresponding explanations). Formally,
our problem assumes three inputs: the target model f , a data
set D (|D| = N ), and a feature attribution method to gener-
ate local explanations. Given these inputs, we seek to gener-
ate a subset S ⊂ D of training data composed of M ≪ N
images that best facilitate simulatability, i.e., help users pre-
dict the decisions of the ML model. As the problem objec-
tive hinges on a human-centered metric, its successful reso-
lution warrants a human-centered approach.

I-CEE: Image Classification Explanations
tailored to User Expertise

We now present our approach to solve this problem: I-CEE,
which is composed of two phases (Figure 2). First, our
framework models the user by estimating their task-specific
expertise (lines 3-4, Algorithm 1). Second, by simulating the
user using this model and a query strategy, I-CEE selects in-
formative example images and explanations (lines 5-8).

User Expertise Estimation
The process of a user predicting an ML model’s labeling de-
cisions can be viewed as one of image annotation, where the
annotators might possess distinct areas of strengths or ex-
pertise affecting their giving labels (Welinder et al. 2010).
For instance, some users find textual patterns to be more
recognizable than shapes while others find shapes to be
more intuitive. During the annotation process, humans fre-
quently use “concept-based thinking” in reasoning and de-
cision making: identifying similarities among various ex-
amples and organizing them systematically based on their
resemblances (Yeh et al. 2020; Armstrong, Gleitman, and
Gleitman 1983; Tenenbaum 1999). Recognizing these as-
pects of human reasoning and informed by annotator mod-
els proposed in active learning, we model a user by estimat-
ing their expertise in applying different task-relevant con-
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Figure 3: User Modeling: Square nodes are deterministic,
while diamond nodes are trainable. Loss back-propagated
for concept discovery (Eq. 3) is marked in blue, while that
for expertise estimation (Eq. 4) is in red.

cepts. We first discover the underlying concepts in the fea-
ture space of the target model. Using the discovered con-
cepts, we model a user with a vector representing their abil-
ity to utilize each concept when annotating images.

Figure 3 provides an overview of the user model. To ar-
rive at the model, I-CEE begins with applying the concept
discovery algorithm on the target model (Yeh et al. 2020)
that aims to recover m concept [c1, · · · cm] , such that

f(x) = h(Ψ(x)) = h(Ξθ(sc(x))) (1)
where Ψ(x) ≡ [ψ(x1), . . . , ψ(xT )] are T activation vectors,
h(·) represents the mapping from the intermediate output of
activation vectors to image labels,2 sc(·) is the concept score

sc(x) = ⟨ψ(xi), cj⟩|mj=1|Ti=1 ∈ Rm·T (2)
that estimates the alignment between each concept and acti-
vation vector pair, and Ξθ : RT ·m → RT ·n is a trainable
mapping that converts concept scores back into the acti-
vation space. Both the concept vectors and concept scores
are unit normalized. For concept discovery (i.e., computing
c, θ), the following cross-entropy loss is minimized:

L(c,θ) = −
N∑
i=1

yi log(h(Ξθ(sc(xi)))), (3)

2Ψ and h can also be viewed as the intermediate and final layers
of the image classification neural network, respectively. As h and Ψ
are not trained as part of the user model, we do not explicitly denote
their parameters (such as weights and biases) in our notation.



Algorithm 1: I-CEE

1: Input: Target model f(·), data D, user annotation yu.
2: Output: A set of example images and explanations S.
3: Discover concepts by solving Eq. 3.
4: Estimate user expertise by solving Eq. 4.
5: for x ∈ D do
6: Calculate Hypercorrection Effect for x using Eq. 5.
7: end for
8: Return top-K image samples.

where y is the prediction from the target model f(·).
After completing concept discovery (which is a one-time

process), the expertise estimation for each user takes place
within the concept space. We freeze all model parameters
(Ψ(·), sc(·), Ξθ(·) and h(·)) trained using Eq. 3 to learn
an expertise vector ω ∈ Rm for each user. The variations
among users are manifested through different values of ω,
as their diverse domain knowledge influences the way they
utilize concepts to arrive at predictions. Concretely, we ask
users to annotate images and use ω to simulate their predic-
tions. The expertise vector ω for a user is learned by mini-
mizing the following cross-entropy loss:

Lω = −
N∑
i=1

yui log(h(Ξθ(ω · sc(xi))), (4)

where yu denotes annotated labels collected from the user.
Once ω is learned, we obtain a user model denoted as
gω(·) = h(Ξθ(ω · sc(·)). If ω1 ≈ ω2, it implies that these
two users (Users 1 and 2) have very similar “reasoning pro-
cess” as the utilization of concepts is very similar. Likewise,
if ω ≈ 1m, this user employs a very similar reasoning mech-
anism as the target model f .

Selection Strategy
Our goal is to select a set of informative examples that can
most improve the user’s simulatability. To estimate the in-
formativeness of the examples, we employ the concept of
the hypercorrection effect in educational psychology. As
the human needs to learn how the model makes the deci-
sion, the model’s prediction is viewed as the “correct” an-
swer whereas the human’s disagreed initial belief is the “er-
ror”. Feedback on the correct answer along with explana-
tions has been found to be crucial and most helpful in learn-
ing new knowledge (Metcalfe 2017). As the confidence in
an error increases, i.e., the confidence in the correct an-
swer decreases, learning from this error example is more ef-
fective (Butterfield and Metcalfe 2001; Metcalfe and Finn
2011). To reflect the hypercorrection effect in I-CEE, we
choose images where the user has lower confidence in the
model’s predicted label after knowing the model’s reason-
ing and argue that using these examples will lead to higher
learning outcomes. Concretely, I-CEE aims to identify a set
of examples S ⊆ D which consists of samples with the top
maximal Hypercorrection Effect:

x = argmax
x∈D

(gω(y|x)− gω(y|x, e))︸ ︷︷ ︸
Hypercorrection Effect of e

, (5)
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Figure 4: (a): Overview of four classes in the synthetic
dataset. (b): User simulatability accuracy when trained with
examples that match/mismatch with the user expertise.

where gω(·) represents the user model, D denotes the train-
ing dataset, and e and y are the local explanation and ma-
chine prediction corresponding to the image x.

Experiments with Simulated Users
Before conducting a user study, we first evaluate our ap-
proach through extensive experiments with simulated users
on one synthetic and three realistic image classification
tasks. To facilitate reproducibility, Appendix includes more
details about the experimental setup.

Synthetic Dataset. We construct a synthetic dataset3 to
validate the design of our proposed method in simulation.
This dataset contains four classes and each class is described
with two concepts, color and shape, illustrated in Figure 4a.
For instance, if a user uses colors to distinguish between dif-
ferent classes (i.e., they have more expertise in using “col-
ors” then “shapes”), then to this user, the red cylinders and
red cubes belong to the same class, which differs from the
orange ones. Likewise, for a user who has high expertise in
using shapes, the cylinders and the cubes are distinguish-
able for this user regardless of their colors. The other visual
features such as angles or background colors are randomly
sampled as they are not essential in this decision-making
process. For each class, we generate 300 images (80% for
training and 20% for testing). We use a ResNet-18 (He et al.
2016) as our classification model and use GradCAM (Sel-
varaju et al. 2017) for generating explanations. Given their
annotation behavior, a simulated behavior is modeled using
Eqs. 3-4, i.e., identical to the modeling approach of I-CEE.

Realistic Datasets. We also benchmark I-CEE on three
real-world datasets: CIFAR-100 (Krizhevsky, Hinton et al.
2009), CUB-200-2011 (Wah et al. 2011) and German Traf-
fic Sign Recognition Benchmark (GTSRB) (Stallkamp et al.
2012). We construct a simulated user from pre-defined an-
notations on each dataset who behaves differently from the
target model. In particular, for each dataset, our simulated
user can distinguish only two classes out of four similar
classes. All methods are evaluated based on this user. For
instance, on CUB-200-2011, the simulated user labels both
Crested and Least Auklet as the same class (Crested Auk-
let), and Parakeet and Rhinoceros Auklet as the same class

3This dataset is based on 3d-shapes (Kim and Mnih 2018).
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Figure 5: Comparison with baseline algorithms with simulated users on three datasets. The ratio of used examples p (in per-
centage) is plotted on the x-axis and simulatability accuracy is on the y-axis. (Results averaged over 5 runs.)

(Parakeet Auklet). We use the original training-test splits on
these datasets and, similar to the procedure in the synthetic
dataset, we use ResNet-50 (He et al. 2016) for classification
training and GradCAM for computing explanations.

Baseline Methods
We evaluate I-CEE against a recent human-centered XAI
approach: Bayesian Teaching (BT) (Yang et al. 2021). BT
simulates a user’s behavior (i.e., their prediction of an image
class) by deploying a ResNet-50-PLDA (probabilistic lin-
ear discriminate analysis (Ioffe 2006)) model. By assuming
users perform Bayesian reasoning, it selects example images
and explanations to better align user’s beliefs to the target
model. I-CEE and BT differ in their approaches to both user
modeling and example selection.

To evaluate the example selection alone, we also bench-
mark against query strategies derived from active learning
(AL). Unlike traditional AL, in our application of AL query
strategies to XAI, the simulated user is the learner and the
target model is the annotator. We use Expected Gradient
Length (EGL) (Settles, Craven, and Ray 2007), Density-
Weighted Method (DWM) (Settles, Craven, and Friedland
2008) as well as a random sampling strategy as baselines.
EGL, in the context of this paper, selects samples (x, e) that
result in the greatest change to the current model if the an-
notated label is known. The “change” imparted to the model
from the queried samples is measured by the gradient of
the objective function with respect to the model parameters.
However, the instances chosen by EGL might be outliers that
cause significant gradient changes. To alleviate this issue,
Settles, Craven, and Friedland (2008) proposes to integrate
a density-weighting technique with the query strategy such
as EGL. Specifically, each sample is weighted with its aver-
age similarity to all other instances in the input dataset. In
this work, we extend EGL with the belief shift in the calcu-
lated EGL when considering e in the input (denoted as EGL-
Shift). Specifically, we compute the difference between EGL
of (x, e) and x. With EGL-Shift, we aim to alleviate the in-
fluence of an image itself on the training gradient but em-
phasize the impact of explanations.

Evaluation Metric
To evaluate our method, we use simulatability, which is
commonly used as a proxy for testing a user’s understanding

of the model’s decision-making process (Hase and Bansal
2020; Arora et al. 2022; Hase et al. 2020). Simulatability is
measured as “to what extent can a user successfully predict
a model’s prediction.” This metric can be used in both sim-
ulation experiments and human user studies.

We follow the experimental settings proposed in (Yeh
et al. 2018; Koh and Liang 2017) to study the influence of
selected examples. Specifically, each method provides an or-
dered set of example images S, where the ranking is decided
by the informativeness defined in the respective method. We
denote the ratio between number of example images |S| and
the size of training data D as p = |S|/|D|. The simulated user
is retrained using these example images x and their corre-
sponding labels y = f(x), where recall that f is the target
model. Given the retrained user model g′ω , we compute the
user’s accuracy of predicting the model’s predictions on the
test set, i.e., the simulatability of the user:

Acc =
1

Nt

Nt∑
i=1

1(yi = g′ω(xi)), (6)

where Nt is the number of samples in the test set.

Experimental Results
Ablation Study. To validate our model design of g(·), we
study (1) whether ω can faithfully reflect the user expertise
and (2) the advantages of tailored explanations according to
the user expertise. We simulate two users on the synthetic
dataset: User 1 only uses color in classification while User 2
only uses shape. We deduce annotations for each user based
on attributes for each class (Figure 4a).

After estimating each user, we investigate their expertise
vector: ω1 and ω2 (ωi ∈ R8). Each entry in ωi represents the
expertise of the user in one specific concept. The top four
largest entries in ω1 and ω2 are complementary, correspond-
ing to the fact that each user has the opposite expertise (i.e.,
each user uses different concepts in the decision-making).
To validate the efficacy of the user model via expertise, we
run an experiment where we train User 1 using a set of
examples specifically chosen based on the User 1 model
(“Matched”), against a set of examples chosen for User 2
(“Mismatched”). As demonstrated in Figure 4b, we observe
that the simulated user achieves high simulatability accuracy
when they receive examples selected according to their ex-
pertise (“Ours Matched”). However, if selecting examples
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Figure 6: Results of experiments with human users (N = 100) comparing I-CEE with the baseline Bayesian Teaching (BT).
(a) Simulatability accuracy on all predictions, (b) Simulatability accuracy on images where the target model made inaccurate
predictions in the CUB-200-2011 dataset, (c) User’s subjective perception of model explanations.

that do not maximize the Hypercorrection Effect tailored to
the particular user (“Ours Mismatched”), the simulatability
accuracy is low, indicating that such examples fail to pro-
vide substantial insights into the target model. Additionally,
we compare our user simulation model to that of Bayesian
Teaching. We observe little differences between the matched
and mismatched settings using the BT framework, suggest-
ing that BT might not be able to accurately simulate the dif-
ferent behaviors of various users. Consequently, it cannot
provide examples that effectively improve user simulatabil-
ity (less performance improvement compared to ours).

Comparison. We compare I-CEE with baselines on three
real-world datasets in Figure 5. Evaluation in user predic-
tion accuracy is conducted at p = [10, 15, 20, 25, 30]%. On
CIFAR-100, our method always outperforms BT and EGL-
Shift but is inferior to EGL and DWM. A potential reason
for this result is that the explanation of CIFAR-100 is vague
due to the low resolution of images. In this case, Hyper-
correction Effect cannot be well captured since explanations
are noisy. On CUB-200-2011 and GTSRB, our method out-
performs other baselines at most of the percentages. For in-
stance, on CUB our method achieves the best performance
after 20%. Note that 20% of the train data consists of 24
images. This is a reasonable number of samples that can be
efficiently studied by human users, which we will show in
the next section. On GTSRB, we observe an evident perfor-
mance gap between our method and the competitive baseline
BT. A possible explanation for this can be attributed to the
architecture of the user model: our model simulates the user
via learning ω in the concept space without weakening the
capability of the final classifier. On the contrary, BT relies
on a PLDA layer to classify images, which can result in sub-
optimal performance when the latent features of images are
highly similar, such as in traffic signs. This is not desirable
because humans are good at distilling critical concepts and
filtering out similar but irrelevant visual features. With more
precise user modeling, our method demonstrates the capa-
bility of offering informative learning samples in most of
the cases within the simulation experiments.

Experiments with Human Users
We conduct a human user study using the CUB-200-2011
and GTSRB datasets following the same settings as in the
simulation experiments. We choose these two datasets as
they are more challenging and the images are in higher res-
olution. We use Bayesian Teaching (Yang et al. 2021) as a
baseline since it is the most state-of-art and closest to our fo-
cus. Users are first asked to study two classes (among which
there are actually four classes) and write down the features
used to distinguish between these classes. This step is to let
the user think as the pre-defined simulated user, to whom
we have tailored model explanations. Then, 20 model ex-
planations selected by our method (experimental group) or
Bayesian Teaching (control group) for users are shown, and
we ask them to write down the features they use to deter-
mine the model prediction. During the evaluation section,
participants first receive a test with 15 questions to predict
the model’s label (images used here are sampled from the
test set and include all four classes evenly). We refer to this
section as “objective understanding”. Then, participants rate
their perceived understanding on seven questions on the 7-
Likert scale, which we refer to as “subjective understand-
ing”. In the user study, we aim to study the following re-
search questions:

• R1: Our framework selects informative samples that can
increase human understanding of the model.

• R2: Human understanding of the model is affected by
task domains.

Participants. We recruited 100 participants (average age
is 28.8 ± 8.6, 49 females, 50 males, and 1 undefined) using
a research platform Prolific4, and randomly assigned them
to one of the two conditions (50 participants/condition). 51
participants have prior experience with AI from using Alexa,
Siri, ChatGPT, or from ML-related courses. All participants
passed the attention check during the user study. The study
protocol has been approved by the Technical University of
Munich IRB. At the beginning of the experiment session,

4https://www.prolific.co/
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Figure 7: Illustration of features used by human users for
distinguishing each class on CUB-200-2011.

we collected informed consent through Prolific. Each par-
ticipant was compensated with a payment of £4.50 for par-
ticipation in the user study (within 30 minutes).

Results
Analysis on R1. The results of the simulatability accuracy
in each condition on each dataset are shown in Figure 6a. On
GTSRB, we observe a statistically significant improvement
in using our framework on user simulatability accuracy by
11.5% (p = 0.007). On the CUB dataset, we see that users
from two conditions achieve similar user prediction accu-
racy and no significant effect is observed. However, if we
inspect the test samples where the target model makes in-
accurate predictions (wrong classification) (6 out of 15 im-
ages in the test are wrongly predicted), our method demon-
strates superior performance compared to BT. Users from
the experimental condition achieve an accuracy of 46.3%,
whereas users from the control condition achieve 40.3%, as
plotted in Figure 6b. These results indicate that users ex-
hibit improved capability in simulating inaccurate predic-
tions from the target model using our method, which is a
more challenging task. Additional evidence of the enhance-
ment achieved through our model can be found in Figure 7.
We count the words of the features that users think the model
uses to distinguish four different classes. When using our
framework, the users tend to agree on the same feature (body
part of the bird) for each class. For instance, about 68% of
the users use “Head” to distinguish Rhinoceros, and about
20% of the users think highly of “Belly” for Least Auk-
let. Nevertheless, it is more difficult for users in Bayesian
Teaching to come to an agreement, for example, for Least
Auklet, only around 10% of the participants use “Body” as
a feature while other users give diverse descriptions. These
results highlight the advantage of the method in improving
user understanding of the given target model.

As shown in Figure 6c, the improvement in subjective un-
derstanding (rating scores) is not significant on CUB (av-
erage rating score is 5.14 in our method and 5.02 in BT).
However, we observe that on GTSRB our method surpasses
BT significantly with p = 0.037. The reason for significant
improvement in GTSRB is that our method selects expla-
nations bringing knowledge for distinguishing four classes.
But BT chooses examples that reflect important features
only for two classes, which hinders users from understand-
ing how the model makes predictions for the other classes.

Analysis on R2. The quantitative result shows that the
task domain (dataset) affects the user’s objective understand-
ing. However, different tasks influence less subjective under-
standing, e.g., no significant difference between two datasets
when using our method as illustrated in Figure 6c. At the
end of the user study, we asked participants for feedback on
comparing the perceived helpfulness of model explanations
in two datasets. While most of the users in both conditions
find the explanations useful, seven users in the experimental
condition and fourteen users in the control condition find the
explanations on bird species are more helpful than the expla-
nations on road signs. One reason causing this uncertainty in
the road sign images is that the salient area is always a circle
that covers the road sign, which seems to “be the only one
characteristic” for different classes.

Conclusion
We present a human-centered XAI framework, I-CEE, that
provides explanations of image classification ML models
that are tailored to user expertise. Our framework first dis-
covers task-relevant concepts, uses these concepts to arrive
at expertise-based user models, and then selects examples
and explanations that help the users to learn the missing
concepts so they can accurately predict the machine’s image
classification decisions. We evaluate our approach through
simulation experiments on four datasets, and report on a
detailed human-subject study (N = 100). In these experi-
ments, we observe that I-CEE outperforms prior art, shows
the promise of human-centered XAI, and motivates future
research direction for the design of XAI systems.

Limitations and Future Work. Future investigation of
our framework can consider the following avenues. First,
more complex models of expertise estimation should be
studied. In this work, we simulate user expertise by employ-
ing the concept-based reasoning approach for image classifi-
cation proposed in (Yeh et al. 2020). An alternative approach
involves utilizing Large Language Models to simulate mul-
tiple humans in textual format (Argyle et al. 2023; Aher, Ar-
riaga, and Kalai 2023). Second, the current framework does
not consider the sample complexity associated with user ex-
pertise estimation. Future work should investigate methods
that estimate user expertise with a small number of real-user
annotations. Third, we encourage replication of our work to
be tested with different datasets, as the power of explana-
tions is dependent on the task domain. Future work should
evaluate on datasets that include a more diverse pool of ex-
amples, as suggested by some of the participants.

Implications for XAI Systems. This study highlights the
importance of personalized XAI, within the explanation-
by-example paradigm for image classification. Future work
should investigate the potential of personalized XAI in other
contexts. We argue that user modeling is essential to pro-
vide explanations that target user-specific misunderstanding
or confusion. Future XAI systems should leverage and ad-
dress individual users’ preferences and confusion. This in-
volves the development of human-in-the-loop systems, al-
lowing users to actively participate in the process of gener-
ating explanations.



Ethical Statement
In this work, we attempt to put human users at the center of
XAI design, with the aim of creating AI systems that can be
interpreted by non-expert end users. To safeguard user pri-
vacy and user rights, we have received approval from Uni-
versity IRB. We believe that only when AI becomes more
accessible, acceptable, and usable, can we realize its full po-
tential to empower the world around us.
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Liao, Q. V.; Pribić, M.; Han, J.; Miller, S.; and Sow, D. 2021.
Question-driven design process for explainable AI user ex-
periences. arXiv preprint arXiv:2104.03483.
Liao, Q. V.; and Varshney, K. R. 2021. Human-centered
explainable ai (xai): From algorithms to user experiences.
arXiv preprint arXiv:2110.10790.
Lundberg, S. M.; and Lee, S.-I. 2017. A unified approach
to interpreting model predictions. Advances in neural infor-
mation processing systems, 30.
Metcalfe, J. 2017. Learning from Errors. Annual Review of
Psychology, 68(1): 465–489.
Metcalfe, J.; and Finn, B. 2011. People’s Hypercorrection
of High-Confidence Errors: Did They Know It All Along?
Journal of experimental psychology. Learning, memory, and
cognition, 37: 437–48.
Owens, M.; and Tanner, K. 2017. Teaching as Brain Chang-
ing: Exploring Connections between Neuroscience and In-
novative Teaching. Cell Biology Education, 16: fe2.



Petsiuk, V.; Das, A.; and Saenko, K. 2018. Rise: Random-
ized input sampling for explanation of black-box models.
arXiv preprint arXiv:1806.07421.

Qian, P.; and Unhelkar, V. 2022. Evaluating the Role of
Interactivity on Improving Transparency in Autonomous
Agents. In Proceedings of the 21st International Conference
on Autonomous Agents and Multiagent Systems, 1083–1091.

Ren, P.; Xiao, Y.; Chang, X.; Huang, P.-Y.; Li, Z.; Gupta,
B. B.; Chen, X.; and Wang, X. 2021. A survey of deep active
learning. ACM computing surveys (CSUR), 54(9): 1–40.

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ” Why
should i trust you?” Explaining the predictions of any clas-
sifier. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining,
1135–1144.

Rong, Y.; Leemann, T.; Nguyen, T.-T.; Fiedler, L.; Qian,
P.; Unhelkar, V.; Seidel, T.; Kasneci, G.; and Kasneci, E.
2023. Towards Human-Centered Explainable AI: A Survey
of User Studies for Model Explanations. IEEE Transactions
on Pattern Analysis and Machine Intelligence.

Rong, Y.; Xu, W.; Akata, Z.; and Kasneci, E. 2021. Hu-
man attention in fine-grained classification. arXiv preprint
arXiv:2111.01628.

Russell, S. 2021. Human-compatible artificial intelligence.
Human-like machine intelligence, 3–23.

Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on com-
puter vision, 618–626.

Settles, B. 2009. Active learning literature survey.

Settles, B.; and Craven, M. 2008. An analysis of active
learning strategies for sequence labeling tasks. In proceed-
ings of the 2008 conference on empirical methods in natural
language processing, 1070–1079.

Settles, B.; Craven, M.; and Friedland, L. 2008. Active
learning with real annotation costs. In Proceedings of the
NIPS workshop on cost-sensitive learning, volume 1. Van-
couver, CA:.

Settles, B.; Craven, M.; and Ray, S. 2007. Multiple-instance
active learning. Advances in neural information processing
systems, 20.

Silva, A.; Schrum, M.; Hedlund-Botti, E.; Gopalan, N.; and
Gombolay, M. 2023. Explainable artificial intelligence:
Evaluating the objective and subjective impacts of xai on
human-agent interaction. International Journal of Human–
Computer Interaction, 39(7): 1390–1404.

Sinha, S.; Ebrahimi, S.; and Darrell, T. 2019. Variational
adversarial active learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 5972–5981.

Stallkamp, J.; Schlipsing, M.; Salmen, J.; and Igel, C. 2012.
Man vs. computer: Benchmarking machine learning algo-
rithms for traffic sign recognition. Neural networks, 32:
323–332.

Tenenbaum, J. B. 1999. A Bayesian framework for concept
learning. Ph.D. thesis, Massachusetts Institute of Technol-
ogy.
Tomsett, R.; Harborne, D.; Chakraborty, S.; Gurram, P.; and
Preece, A. 2020. Sanity checks for saliency metrics. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, 6021–6029.
Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S. 2011. The caltech-ucsd birds-200-2011 dataset.
Welinder, P.; Branson, S.; Perona, P.; and Belongie, S. 2010.
The multidimensional wisdom of crowds. Advances in neu-
ral information processing systems, 23.
Yang, S. C.-H.; Folke, N. E. T.; and Shafto, P. 2022. A psy-
chological theory of explainability. In International Confer-
ence on Machine Learning, 25007–25021. PMLR.
Yang, S. C.-H.; Vong, W. K.; Sojitra, R. B.; Folke, T.; and
Shafto, P. 2021. Mitigating belief projection in explainable
artificial intelligence via Bayesian teaching. Scientific re-
ports, 11(1): 9863.
Yang, X. J.; Unhelkar, V. V.; Li, K.; and Shah, J. A. 2017.
Evaluating effects of user experience and system trans-
parency on trust in automation. In Proceedings of the 2017
ACM/IEEE international conference on human-robot inter-
action, 408–416.
Yeh, C.-K.; Kim, B.; Arik, S.; Li, C.-L.; Pfister, T.; and
Ravikumar, P. 2020. On completeness-aware concept-based
explanations in deep neural networks. Advances in neural
information processing systems, 33: 20554–20565.
Yeh, C.-K.; Kim, J.; Yen, I. E.-H.; and Ravikumar, P. K.
2018. Representer point selection for explaining deep neu-
ral networks. Advances in neural information processing
systems, 31.



Appendix
Target Models and Explanations

Datasets
We assess our method on four datasets. In the synthetic
dataset, there are 960 images for training and 240 images
for testing. These images are distributed across four classes
(Red-Cylinder, Orange-Cylinder, Red-Cube, Orange-Cube).
CIFAR-100 (Krizhevsky, Hinton et al. 2009) comprises a
total of 60,000 images, with 50,000 images designated for
training and 10,000 images for testing. The dataset encom-
passes 100 diverse classes, each containing 600 images.
CUB-200-2011 is a fine-grained dataset focusing on vari-
ous bird species. The dataset encompasses a total of 11,788
images, distributed with 5,994 images for training and 5,794
images for testing. It comprises 200 different bird species,
with an average of 30 images per species in training and
30 in testing. CUB-200-2011 (Wah et al. 2011) is a fine-
grained dataset of bird species. The dataset consists of a to-
tal of 11,788 images, where 5,994 are for training and 5,794
for testing. It contains 200 different bird species, with each
species having on average 30 images for training and 30 for
testing. GTSRB (German Traffic Sign Recognition Bench-
mark) (Stallkamp et al. 2012) contains 51,840 images of
German road signs in 43 classes. We use 80% and 20% of
the whole dataset as training and testing sets, respectively.

Target Model Details
We finetune the ResNet-18 (He et al. 2016) pre-trained
on ImageNet as our target models on each dataset. On
the synthetic dataset, the target models are trained using
the Stochastic Gradient Descent (SGD) Optimizer with the
learning rate of 1e−4 for 10 epochs. On realistic datasets, the
learning rate is set to 1e−3 and the target model is trained
for 50 epochs. Input images are resized to 224 × 224 on all
datasets except CUB-200-2011, where images are resized to
448× 448. When training, random horizontal flipping is de-
ployed as data augmentation. The first row in Table 1 lists
the test accuracy of the target model on each dataset with all
test classes.

Synthetic CIFAR-100 CUB-200-2011 GTSRB
Test (all) 1.00 0.73 0.78 0.99

Test (subset) 1.00 0.82 0.81 0.99

Table 1: Accuracy of target models. The first row indicates
the accuracy of all test classes. The second row contains
the accuracy for classes selected for training simulated user
models.

Target Model Explanations
We employ GradCAM (Selvaraju et al. 2017), compute af-
ter the final convolutional block in the target model, as our
chosen method for generating explanations. We choose this
explanation is that GradCAM is very closed to human gaze-
based attention in discovering distinguishable visual fea-

tures (Rong et al. 2021), which benefits human understand-
ing compared to other explanation methods. The saliency
map is resized to the original input, i.e., x ∈ Rd and e ∈ Rd.
Figure 8 shows explanation examples on each dataset. We
see for instance that the target model highlights the loco-
motive of the train on CIFAR-100, which represents the im-
portant feature of a train. Furthermore, on GTSRB, the “left
turn” on the sign is also highlighted by the saliency map.
This study uses local explanations for their effectiveness
in enhancing user understanding (Rong et al. 2023). Future
work should explore more advanced model explanations, as
our framework accommodates various explanations.

Implementation Details of I-CEE
In this section, we provide an overview of the implementa-
tion details of our proposed method. This encompasses the
training procedure for our simulated user model, as well as
an explanation of the selection strategy we employ.

User Model Training
We select four very similar classes on each dataset to train
simulated user models. We limit the number of studied
classes because we aim to use them in studying the under-
standing of real human users based on the selected exam-
ples. The test performance of the target model on four se-
lected classes is shown in the second row in Table 1. To
obtain the simulated user, we first learn a concept in the la-
tent space by using Eq. (2) and Eq. (3). On the synthetic
dataset, we use m = 8 using this dimension, the test accu-
racy reaches almost 100%, and thus no need to use a higher
dimension number. On realistic datasets, the number of con-
ceptsm can be set by end users. This is related to the dimen-
sion of the expertise vector ω ∈ Rm (Eq.(4)). To choose a
proper dimension of ω, we train different concept spaces us-
ing differentm on each realistic dataset. More details can be
found in the following section. The final setting is m = 64
on each realistic dataset.

After obtaining concepts, the user model gω(·) is trained
with the user annotations using Eq.(4). All other parameters
in the network are frozen except ω. To establish simulated
users with specific expertise, we simulate user-annotated la-
bels by mixing two classes into one class. This implies that
the user must have different expertise from the target model
because it cannot distinguish all four classes. The selected
four classes and the user annotation on each realistic dataset
are illustrated in Figure 9. We train gω(·) using Adam Opti-
mizer with a learning rate of 1e−2 and for 40 epochs. Note
that in experiments in Figure 5 in the main paper, the same
training setting is used.

Hyper-parameter Settings. In this section, we show the
choice of m, the number of concepts, on each realistic
dataset. Table 2 lists the accuracy of the trained simulated
user (test with user annotations) and the number of train-
able parameters in the concepts c as well as mapping func-
tion Ξ(·). The chosen m is marked in bold according to the
trade-off between the accuracy and the number of parame-
ters. Lower number of trained parameters is preferred, if the



(a) Synthetic dataset (b) CIFAR-100 (c) CUB-200-2011 (d) GTSRB

Figure 8: Illustration of model explanations on each dataset. The saliency map highlights the important area (feature) that is
important for the model decision.
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Figure 9: Illustration of annotation given by the simulated user on the (a) synthetic, (b) CIFAR-100, (c) CUB-200-2011 and (d)
GTSRB dataset. Original label is in black, and the label given by the simulated user is in blue.

m 16 32 64 128
Acc 85.00 ± 0.50 89.25 ± 0.34 93.50 ± 0.70 96.5± 0.23

# Param. (M) 0.94 0.97 1.05 1.19

(a) CIFAR-100

m 16 32 64 128
Acc 25.75 ± 0.78 27.27 ± 0.89 63.35 ± 0.45 65.15 ± 0.60

# Param. (M) 3.67 3.73 3.85 4.08

(b) CUB-200-2011

m 8 16 32 64
Acc 89.17± 0.34 85.83 ± 0.35 98.33 ± 0.23 100.0 ± 0.10

# Param. (M) 0.92 0.94 0.97 1.05

(c) GTSRB

Table 2: Effect of m on the user model performance.

user model needs to be deployed on resource-limited sce-
narios in real-world applications. From the results, we see
that using m = 64 on three datasets achieves already very
high test accuracy. Incorporating additional concepts does
not yield a substantial improvement in performance; instead,
it introduces more computational costs.

Selection Strategy
We use Eq.(5) for selecting images that can better make
users think more and learn more about the model reason-
ing mechanism from given examples. Based on the trained
user model, we calculate the probability of the input im-

age belonging to the class y given by the target model,
i.e., gω(y|x). When giving (x, e) as the input, we deploy
the explanation e as the weighted mask (the saliency map,
achieved by normalizing the saliency map, onto the input.
This approach is commonly used for evaluating the effec-
tiveness of explanations (Petsiuk, Das, and Saenko 2018;
Tomsett et al. 2020).

Details of Baselines
Bayesian Teaching
We implement Bayesian Teaching according to (Yang et al.
2021). We adapt their image selection strategy as we do
not have two particular classes for our questions. In par-
ticular, the question used in (Yang et al. 2021) is a two-
alternative forced choice task, where the authors use the
Bayesian Teaching probability to choose two examples from
the target model-predicted class and two examples from the
alternative class (pre-defined by the authors). The selected
images aim to lead the user model (explainee model) fL(·)
to classify a target image with the same label given by
the target model. Therefore, we adapt their method by not
choosing examples from the alternative class. Concretely,
the probability we aim at is that x belongs to the class y
from which another image τy is sampled, which is denoted
as f(x | τy) (borrowed from (Yang et al. 2021)). Under the
PLDA model (Ioffe 2006), this probability can be expressed
in the form of the normal distribution as follows:

f(x | τy) = N (u | Ψ

2Ψ+ I
uy,

Ψ

2Ψ+ I
+ I), (7)

where u is the image x transformed by the shift vector
m and rotation and scaling matrix A in the PLDA layer.



Likewise, the image τy is transformed to uy . Ψ is another
parameter in the learned PLDA layer. To incorporate the
PLDA layer in the user model (explainee model), we train a
ResNet-18 where the final layer is replaced with the PLDA
layer using the user annotations as training labels. Utilizing
the trained user model, we can compute f(x|τy), enabling
the selection of images based on the ranking of this term.

Active Learning Baselines
Our paper incorporates baselines derived from active learn-
ing. These baselines provide different selection strategies,
which are used to highlight the effectiveness of our proposed
Hypercorrection Effect. Expected Gradient Length (Settles,
Craven, and Ray 2007) (EGL) is calculated as follows:

xEGL = argmax
x

K∑
i

fθ(yi | x, e) ∥∇ lθ(L ∪ ⟨x, e, yi⟩)∥,

(8)
where fθ(·) denotes the trained user model in our case with
parameters θ. To include e in the input, we use the explana-
tion e as the weighted mask in the same manner as proposed
in the section “Selection Strategy”. L is the objective func-
tion for the model training, which is the cross-entropy loss.
Let ∇ lθ(L) be the gradient of the objective function with
respect to θ. The Euclidean norm of the objective function,
∥∇ lθ(L)∥ should be nearly zero since the model converged
in the last round of training (Settles, Craven, and Ray 2007).
Therefore, xEGL can be simplified as:

xEGL = argmax
x

K∑
i

fθ(yi | x, e) ∥∇ lθ(⟨x, e, yi⟩)∥. (9)

We extend EGL with the belief shift of the EGL when con-
sidering only x in the input (denoted as EGL-Shift). With
EGL-Shift, we aim to alleviate the influence of an image
itself on the training gradient but emphasize the impact of
explanations. Concretely, we compute the EGL-Shift as fol-
lows:

xEGL-Shift = argmax
x

(

K∑
i

fθ(yi | x, e) ∥∇ lθ(⟨x, e, yi⟩)∥

(10)

−
K∑
i

fθ(yi | x) ∥∇ lθ(⟨x, yi⟩)∥).

Density-Weighted Method (DWM) (Settles and Craven
2008) can be combined with a base selection strategy, such
as EGL. Particularly, it chooses data points that are uncer-
tain but also representative of the underlying distribution of
the input data. The distribution for a data point is estimated
using the similarity between this point and other points in
the dataset. Specifically, DWM is conducted as follows:

xDWM = argmax
x

ϕA(x) · (
1

U

U∑
u=1

sim(x,x(u)))β , (11)

where ϕA(x) denotes the calculation of EGL for x. U is
the whole input dataset. Following the setting in (Settles and

Craven 2008), we set β to 1; The similarity between two im-
ages is calculated as the cosine similarity between the fea-
ture vectors of images in the latent space.

Computational Infrastructure
All experiments in this paper are conducted on the device as
listed below:

Device Attribute Value
Computing infrastructure GPU

GPU model NVIDIA GeForce RTX 2080 Ti
GPU number 1

CUDA version 11.3

Table 3: Computational infrastructure details.

User Study Details
We present the procedure and some essential details of our
human user study in this section.

User Study Procedure
The procedure of our user study is as follows:

1. Participants complete a demographic survey, such as
their experience with AI models.

2. Participants complete the warmup task. By doing this,
participants adapt their reasoning to the simulated model,
for which the examples on the following page are se-
lected.

3. Participants complete the experimental task. They are
asked to the model’s classification for 15 images.

4. Participants complete a questionnaire to rate their subjec-
tive understanding of model explanations.

5. Repeat Steps 2-4 on another dataset.

Before the beginning of the experimental task (Step 3),
participants are asked to choose the task that they will do.
Choices are “I will choose the label that I think is correct for
the image” and “I will choose the label that I think the model
would predict”. This single-choice question also serves as an
attention check. By doing this, we can control whether all
participants fully understand the task. All participants in our
user study made the correct choice, i.e., “choose the label
that the model would predict”.

Objective Understanding Questions
Figure 10 gives an example question used in our user study
for objective understanding (simulatability). In total, there
are 15 questions and they almost equally cover all four dif-
ferent classes. The test image is shown on the left, with the
selected model explanations on the right (top 20 in the rank-
ing according to the selection strategy). In two groups (con-
trol and experimental groups), the examples on the right are
selected by different algorithms but test images on the left
are the same for the two groups.



Figure 10: Question on objective understanding: participants
are asked to predict the model’s prediction given selected
model explanations.

Subjective Understanding Questions
We use the following question for measuring subjective un-
derstanding adapted from (Silva et al. 2023; Liao et al.
2021), which are answered with a 7-point Likert scale (1–
Strongly Disagree; 7–Strongly Agree).

• I understood the explanations within the context of this
study.

• The explanations provided enough information for me to
understand how the Machine Learning model arrived at
its label. (Alternative: I would need more information to
understand the explanations.)

• I think that most people would learn to understand the
explanations very quickly.

• I would like to have more examples to understand the
machine’s reasoning and how the machine arrived at its
labeling.

• The explanations were useful and helped me understand
the machine’s reasoning.

• I believe that I could provide an explanation similar to
the machine’s explanation for a new image.


